Show that a mass on a spring obeys simple harmonic motion.

Let the mass be m. Let the natural length of the spring be L. The defining equation of simple harmonic motion (SHM) is that the acceleration is proportional to, and acts in the opposite direction to, the displacement. To show that this example obeys SHM, we need to derive an equation of motion that is in this form. First we let the mass and spring hang in equilibrium (see diagram). In equilibrium, the mass is not moving, so the vertical forces must balance out. The only forces acting on the mass are its weight, downwards, and the tension in the spring, upwards, which is given by Hooke's Law: F=-kl where l is the distance from the equilibrium position. Therefore the weight and the tension must be equal. Now we displace the mass slightly downwards, by a distance x (see diagram). As the extension of the spring has changed, the tension must also have changed, but the weight of the mass is the same. The new tension is T=-k(l+x). We use the equation F=ma where F is the resultant force acting on the mass, and solve this by subbing in the weight found earlier to get a=-kx/m. We see that the acceleration is proportional to the displacement, and acts in the opposite direction, as given by the minus, so obeys SMH.

Answered by Tia J. Physics tutor

5717 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

This is a question on the photoelectric effect: For potassium, the work function is 3.65E-19J. Find the maximum wavelength of light that will cause photoelectrons to be emitted when shone onto potassium.


For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.


How does a cyclotron work?


Where does the formula for gravitational potential come from? Why the minus sign?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences