differentiate with respect to x. i). x^(1/2) ln (3x),

From this we can see that equation has 2 parts therefore we should look to using the product rule which is used to differiantiate a two functions multiplied together so (fg)'=f'g+fg'. In this question the differential of x^(1/2) is simply 1/2x^1/2 which can be rearranged using indices rules to 1/2x^1/2. Differentiating ln(3x) requires product rule in its own respect one can denote (3x) as U the ln(U) would simply be 1/U using ln then differential of u is 3. Therefore the differential on ln(3x) is 1/x simplified.
Overall the answer should ln(3x)/2x^(1/2) + 1/x^(1/2)

Answered by Jesse D. Maths tutor

5450 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


Calculate the binomial expansion of (2x+6)^5 up to x^3 where x is decreasing.


By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.


Prove that 1/(tanx) + tanx = 1/sinxcosx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences