How do i solve simultaneous equations?

simulatneous equations are solved by eliminating one of the unknowns such as x or y. there are a number of ways to do this such as substitution or subtraction/addition. For this example we will use subtraction addition as i always found that the easier method at GCSE since it often avoids fractions.e.g. 2y=3x+12 and 3y=5x+14we need to choose one of the two unknowns to eliminate and then find their lowest common denominator. I will choose x, where the LCD is 15 (35=15). now we multiply the entire equation through in order that the number in front of x (called the coefficient) is 15. in the first equation, we multiply through by 5.(25)y=(35)x+(125)10y=15x+60in the second equation we multiply through by 3 like before(33)y=(53)x+(143)9y=15x+42now both the coefficients of x are 15 so we can subtract one equation from the other(10-9)y=(15-15)x+(60-42)y=0x+18y=18we now have the y value, since x is now zero. to find the x value all we need to do is go back to one of the first equations and put the value y=18 into the equation to resolve for x.(218)=3x+1236-12=3x24=3xx=8and thats everything. By making sure we can subtract one equation from another to eliminate one of the unkowns we can subsequently obtain both values. in this case, y=18 and x=8 

Answered by Matthew K. Maths tutor

4283 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How can i understand fractions?


There are 5 red balls and 7 green balls in a bag. A ball is taken from the bag at random and not replaced. Then a second ball is taken from the bag. What is the probability that the 2 balls are the same colour?


How can I prepare for my Maths GCSE exams?


A ladder of length 4.5m is leaning against a wall. The foot of the ladder is 2.3m from the base of the wall. What is the angle the ladder makes with the wall?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences