How do I find the square root of a complex number?

Say you want to find the square root of the complex number 3+2i.
We can assume that the answer we want will be in the form a+bi.
It follows then, that you can also write 3+2i as (a+bi)2.
Expanding this gives us 3+2i = a2+2abi-b2
Then all we need to do is compare the coefficients of the imaginary and real parts: i.e. 3 = a2-b2 and 2 = 2ab.
Solve these 2 simultaneous equations to get a =1.8 and b = 0.56 (ignore any imaginary solutions for a and b - they have to be real).
Therefore the square root of 3+2i is 1.8+0.56i. You can check this by squaring our solution and you'll get back to 3+2i (or near enough due to rounding).


Related Further Mathematics A Level answers

All answers ▸

Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences