Solve the equation 8x^6 + 7x^3 -1 = 0

The first thing to recognise is this is a quadratic in disguise, therefore we can rewrite the equation in terms of a new variable y.
Where y=x3
The equation then becomes 8y2+7y-1=0 .
We then factorise this into (8y-1)(y+1)=0 and work out y=1/8 or -1.

Then substitute this into the equation for y=x3 so that x3=1/8 and x3=-1
Solving for x gives us x=1/2 or -1
Things to note: A common mistake is that even though the square root of -1 has no solution the cube root of -1 does.

Answered by Kelan P. Maths tutor

6355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


integrate function (x^4+3x)/(x^2) with respect to x


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


Integrate xcos(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences