Integrate exp(2x)cos(8x) by parts

Let u=exp(2x) and v'=cos(8x)From these you can obtain u' and vu=2exp(2x) and v=1/8 sin(8x)Formula: integral(uv'dx)=uv-integral(vu'dx)=1/8 exp(2x)sin(8x)-integral(1/4 sin(8x)exp(2x))=1/8exp(2x)sin(8x)+1/16cos(8x)exp(2x)

Answered by Chloe D. Maths tutor

3210 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate terms with sin^2(x) and cos^2(x) in them? For example integrate (1+sin(x))^2 with respect to x


i) differentiate xcos2x with respect to x ii) integrate xcos2x with respect to x


Use implicit differentiation to find the derivative of 2yx^2, with respect to x.


Let f(x)=x^3 - 2x^2 + 5. For which value(s) of x does f(x)=5?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences