Integrate exp(2x)cos(8x) by parts

Let u=exp(2x) and v'=cos(8x)From these you can obtain u' and vu=2exp(2x) and v=1/8 sin(8x)Formula: integral(uv'dx)=uv-integral(vu'dx)=1/8 exp(2x)sin(8x)-integral(1/4 sin(8x)exp(2x))=1/8exp(2x)sin(8x)+1/16cos(8x)exp(2x)

CD
Answered by Chloe D. Maths tutor

3372 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a circle c has the equation x^2 + y^2 -4x + 10y = k. find the center of te circle


Explain how integration via substitution works.


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


how do you differentiate y=x^2 from first principles?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences