Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.

(x+1)(x+2) = ( x^2 + 3x + 2) - multiplying out the first 2 terms(x^2 + 3x + 2)(x + 3) = x^3 + 3x^2 + 2x + 3x^2 + 9x + 6 - multiplying the product of the first two terms by the last termx^3 + 6x^2 + 11x + 6 - collecting like terms
a = 1b = 6c=11d=6

Answered by Rachel K. Maths tutor

6102 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

y^2-64


A book was reduced by 35% in a sale. It's new price is £16. What was the original price ?


Write √98+3√8-√200 in the form a√2, where a is an integer


Solve by factorisation: 2(x^2) - 5x - 12 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences