The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0

We argue using the discriminant of a quadratic polynomial. For a quadratic ax^2 + bx + c=0, the discriminant D is D = b^2 - 4ac. When this quadratic has two distinct real roots, we have that D > 0. So we proceed by putting "0" on one side of the equation and plugging in the values from our expression. Here in our case, a = (k+3), b= 6, c=(k-5). (Notice c is not equal to k, since we need to have 0 on one side of the equation and so subtract 5 from both sides first).62-4(k+3)(k-5)>0Squaring 6 and multiplying out the brackets we get:36-4(k2+3k-5k-15)>0Collecting terms we get:36-4(k2-2k-15)>0Now we can divide everything by 4 to get:9-(k2-2k-15)>0Putting everything over to the other side we get:k2-2k-24>0And we are done.

HD
Answered by Huw D. Maths tutor

14974 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


How do I find the angle between a vector and a plane in cartesian form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning