The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0

We argue using the discriminant of a quadratic polynomial. For a quadratic ax^2 + bx + c=0, the discriminant D is D = b^2 - 4ac. When this quadratic has two distinct real roots, we have that D > 0. So we proceed by putting "0" on one side of the equation and plugging in the values from our expression. Here in our case, a = (k+3), b= 6, c=(k-5). (Notice c is not equal to k, since we need to have 0 on one side of the equation and so subtract 5 from both sides first).62-4(k+3)(k-5)>0Squaring 6 and multiplying out the brackets we get:36-4(k2+3k-5k-15)>0Collecting terms we get:36-4(k2-2k-15)>0Now we can divide everything by 4 to get:9-(k2-2k-15)>0Putting everything over to the other side we get:k2-2k-24>0And we are done.

HD
Answered by Huw D. Maths tutor

15128 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


Solve for x, 5sin(x) - 3cos(x) = 2 , in the interval 0<x<2pi


The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning