Determine the stationary points of y=(5x^2)/(lnx)

Differentiate y with respect to x using quotient rule:y'=[(1/x)(5x^2)-(10x)(lnx)]/(lnx)^2 =[5x-10xlnx]/(lnx)^2Stationary points occur when y'=0, so when y'=0 we have:5x-10xlnx = 0x(5-10lnx)=0So x=0 or 5-10lnx=0But when x=0, lnx is undefined, so there is no y value at x=0. So x cannot equal 0.Therefore: 5-10lnx=0 x=e^0.5Substitute back into y, we obtain:y=5e/0.5 = 10eSo Sationary Point is: (e^0.5, 10e)

JL
Answered by Jimmy L. Maths tutor

3916 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentation and how does it work?


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


Differentiate: y = sin(2x).


Use the chain rule to differentiate y=1/x^2-2x-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning