Determine the stationary points of y=(5x^2)/(lnx)

Differentiate y with respect to x using quotient rule:y'=[(1/x)(5x^2)-(10x)(lnx)]/(lnx)^2 =[5x-10xlnx]/(lnx)^2Stationary points occur when y'=0, so when y'=0 we have:5x-10xlnx = 0x(5-10lnx)=0So x=0 or 5-10lnx=0But when x=0, lnx is undefined, so there is no y value at x=0. So x cannot equal 0.Therefore: 5-10lnx=0 x=e^0.5Substitute back into y, we obtain:y=5e/0.5 = 10eSo Sationary Point is: (e^0.5, 10e)

JL
Answered by Jimmy L. Maths tutor

3927 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


How do I use the discriminant in circle geometry?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning