Determine the stationary points of y=(5x^2)/(lnx)

Differentiate y with respect to x using quotient rule:y'=[(1/x)(5x^2)-(10x)(lnx)]/(lnx)^2 =[5x-10xlnx]/(lnx)^2Stationary points occur when y'=0, so when y'=0 we have:5x-10xlnx = 0x(5-10lnx)=0So x=0 or 5-10lnx=0But when x=0, lnx is undefined, so there is no y value at x=0. So x cannot equal 0.Therefore: 5-10lnx=0 x=e^0.5Substitute back into y, we obtain:y=5e/0.5 = 10eSo Sationary Point is: (e^0.5, 10e)

Answered by Jimmy L. Maths tutor

3164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know if I am using the right particular integral when solving a differential equation


Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)


How do you differentiate y=sin(cos(x))?


Find the general solution to the differential equation '' (x^2 + 3x - 1) dy/dx = (2x + 3)y ''


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences