Determine the stationary points of y=(5x^2)/(lnx)

Differentiate y with respect to x using quotient rule:y'=[(1/x)(5x^2)-(10x)(lnx)]/(lnx)^2 =[5x-10xlnx]/(lnx)^2Stationary points occur when y'=0, so when y'=0 we have:5x-10xlnx = 0x(5-10lnx)=0So x=0 or 5-10lnx=0But when x=0, lnx is undefined, so there is no y value at x=0. So x cannot equal 0.Therefore: 5-10lnx=0 x=e^0.5Substitute back into y, we obtain:y=5e/0.5 = 10eSo Sationary Point is: (e^0.5, 10e)

Answered by Jimmy L. Maths tutor

3401 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

if y= e^(5x) what is dy/dx


Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


The straight line L1 passes through the points (–1, 3) and (11, 12). Find an equation for L1 in the form ax + by + c = 0, where a, b and c are integers


A curve has the equation y=3x^2-2x+7, find the gradient of the line at the point (6,3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences