Integrate (lnx)/x^2 dx between limits 1 and 5

Let I = integral[(lnx)/x^2 dx] for simplicity.Firstly, we realise we must use integration by parts. This is:Integral [u(x)v'(x) dx] = u(x)v(x) - Integral[u'(x)v(x) dx]So we can see that, by letting u(x)=lnx and v'(x)=1/x^2, we have:I = (lnx)(-1/x) - integral[(1/x)(-1/x) dx] = -(lnx)/x + integral [1/x^2 dx] = -(lnx)/x - 1/x (+C would be used for indefinite integral; where there are no limits)Plug in the limits, we have:-ln5/5-1/5+ln1/1+1/1=4/5 - (ln5)/5or (4-ln5)/5

JL
Answered by Jimmy L. Maths tutor

3771 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 9^(3x + 1) in the form 3^y , giving y in the form ax + b, where a and b are constants.


Find the range of a degree-2 polynomial function such as 2x^2 +1, or x^2 + 2x - 3.


Differentiate f(x) = x sin(x)


If y = 2(x^2+1)^3, what is dy/dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning