Integrate xsin(2x) by dx between the limits 0 and pi/2.

First it is important to identify that this is an integration by parts question as it can't be solved by substitution.
Let I = integral for ease of notation.Write out integration by parts formula I(u)dv= uv -I(v)du. You therefore need to select v and u so that you can integrate by du later on in your analysis.
In this case if we select u = x; du = dx. And if we select dv = sin2x; v = -cos(2x)/2.Then write in form as above I(u)dv = -(xcos(2x))/2 + I(cos(2x) /2 ) dx = -(xcos(2x))/2 +sin(2x)/4
Then sub in the limits to this expression to arrive at an answer of pi/4.

Answered by Benedict A. Maths tutor

6108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?


Why is it that sin^2(x) + cos^2(x) = 1?


A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.


Let y be a function of x such that y=x^3 + (3/2)x^2-6x and y = f(x) . Find the coordinates of the stationary points .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences