Integrate xsin(2x) by dx between the limits 0 and pi/2.

First it is important to identify that this is an integration by parts question as it can't be solved by substitution.
Let I = integral for ease of notation.Write out integration by parts formula I(u)dv= uv -I(v)du. You therefore need to select v and u so that you can integrate by du later on in your analysis.
In this case if we select u = x; du = dx. And if we select dv = sin2x; v = -cos(2x)/2.Then write in form as above I(u)dv = -(xcos(2x))/2 + I(cos(2x) /2 ) dx = -(xcos(2x))/2 +sin(2x)/4
Then sub in the limits to this expression to arrive at an answer of pi/4.

BA
Answered by Benedict A. Maths tutor

7765 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.


What is an improper fraction, and how to I make thisproper so that it can be differentiated?


A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)


A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning