Solve these two simultaneous equations.

eq.1 4x+3y=7eq.2 3x+7y=16
You want to eliminate one of the variables (either x or y) reducing the problem to just one equation with one variable which can be solved. This can be done by multiplying each equation by a factor and then subtracting one equation from the other. In this case, eliminating x.
Multiplying eq1. by 3 gives: eq.3 12x+9y=21eq.2 by 4 gives: eq.4 12x+28y=64Then subtracting eq.3 from eq.4 (to give a positive multiple of y, although the opposite calculation could be done) leaves: 19y=43 therefore y=43/19. Subbing this number back into either of the original equations solves for x. A check can be performed by subbing both obtained values into the other equation and ensuring the answer is consistent.

TH
Answered by Tobias H. Maths tutor

4549 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 31 days in January. January 21st 2015 was a Wednesday. What day of the week was February 8th 2015?


Solve the quadratic: 3x^2+4x = 20 to find x.


There is a spinner game at a fair. The spinner is numbered with all even numbers from 2 to 12. Each section is equal in size. Dan has numbers 4 and 10. What is the probability that he wins a prize? Give your answer as a fraction in its simplest form.


Solve the following quadratic equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning