How do I work out how a number is written in fraction form, if it is a reoccurring decimal?


If I have a reocurring decimal I use a special trick to work it out as a fraction. The trick is to try and cancel out the reocurring bit by multiplying by 10 several times and then using subtraction.
E.g. 7.999999... where 9 is reocurring.First define x as the decimal we are interested in. x=7.999..Next we would multiply x by 10 to get 10x=79.99999...We do this because we know that subtracting x from 10x would cancel out the reocurring bit to give 9x=79-7=72.If 9x=72, then dividing everything by 9 gives x=72/9.

Answered by Jasmin D. Maths tutor

2662 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following equation by factorisation: x^2 - 2x -15 = 0


Write 2x^2 + 6x + 6 in the form a(x^2 + b) + c by completing the square.


A solution to the equation 2x^2-3x-17=0 lies between 2&3 use method of trail and improvement to find the solution


0.15^2 x (1-0.15)^3 to 2 s.f


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences