Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.

Firstly. Recognise which method you should use to approach this question. In this case, you can find the stationary point of a curve where its gradient is 0 i.e. at a point where the gradient changes from positive to negative or vice versa. This can be done by differentiating y (finding f'(x)) and equating to 0 (f'(x)=0) to then solve and find the x values. Let's take it step by step.
Secondly. Differentiate curve y.f(x) = 3x^4 - 8x^3 - 3f'(x) = 12x^3 - 24x^2
Thirdly. Equate to 0 and factorise the derivative (f'(x)) to make it easier to solve.12x^3 - 24x^2 = 012x^2(x - 2) = 0Treating both terms separately:12x^2 = 0 ----> x = 0x - 2 = 0 ----> x = 2
Finally. Conclude that the stationary points for curve y are found at x=0 and x=2.

Answered by Laurene L. Maths tutor

4503 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]


How do I show two vectors are perpendicular?


How would I write (1+4(root)7)/(5+2(root)7) in the form m + n(root)7, where m and n are integers?


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences