Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.

Firstly. Recognise which method you should use to approach this question. In this case, you can find the stationary point of a curve where its gradient is 0 i.e. at a point where the gradient changes from positive to negative or vice versa. This can be done by differentiating y (finding f'(x)) and equating to 0 (f'(x)=0) to then solve and find the x values. Let's take it step by step.
Secondly. Differentiate curve y.f(x) = 3x^4 - 8x^3 - 3f'(x) = 12x^3 - 24x^2
Thirdly. Equate to 0 and factorise the derivative (f'(x)) to make it easier to solve.12x^3 - 24x^2 = 012x^2(x - 2) = 0Treating both terms separately:12x^2 = 0 ----> x = 0x - 2 = 0 ----> x = 2
Finally. Conclude that the stationary points for curve y are found at x=0 and x=2.

LL
Answered by Laurene L. Maths tutor

4668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 2cos2(x) + 3sin(x) = 3, where 0<x<=π


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


The equation " x^3-3x+1=0 " has three real roots. Show that one of the roots lies between −2 and −1


Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences