Solve the equation: log5 (4x+3)−log5 (x−1)=2.

As both terms on the left hand side have base 5 we know we can combine them. When dealing with logs, a minus means we can divide them, and a plus means we can multiply them. This will leave us with log5(4x+3/x-1)=2. Next we can get rid of the log, we do this by taking 5 squared as this is what the log means. This leaves us with 4x+3/x-1=5^2=25. We can now solve this to find x. 4x+3=25(x-1), expand the brackets: 4x+3=25x-25. Taking all x to one side and constants to the other leaves us with 28=21x. Therefore x=4/3

Answered by Hugh G. Maths tutor

8308 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following inequality and shade the region to which it applies on a graph. 10x(squared) < 64x - 24


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


Use the substitution u = 2^x to find the exact value of ⌠(2^x)/(2^x +1)^2 dx between 1 and 0.


The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences