Solve the equation: log5 (4x+3)−log5 (x−1)=2.

As both terms on the left hand side have base 5 we know we can combine them. When dealing with logs, a minus means we can divide them, and a plus means we can multiply them. This will leave us with log5(4x+3/x-1)=2. Next we can get rid of the log, we do this by taking 5 squared as this is what the log means. This leaves us with 4x+3/x-1=5^2=25. We can now solve this to find x. 4x+3=25(x-1), expand the brackets: 4x+3=25x-25. Taking all x to one side and constants to the other leaves us with 28=21x. Therefore x=4/3

HG
Answered by Hugh G. Maths tutor

8399 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.


Solve the following simultaneous equations: y-3x+2=0, y^2-x-6x^2=0


find the gradient of y=x3 X0=5


Differentiate y = 7(x)^2 + cos(x)sin(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences