Find the minimum and maximum points of the graph y = x^3 - 4x^2 + 4x +3 in the range 0<=x <= 5.

First, use the standard method of setting the derivative to be equal to 0 to find the stationary points. This yields the equation 3x^2 - 8x + 4 = 0 and so the stationary points are at x = 2/3 and 2 respectively.It is possible to then continue by finding the second derivative to determine the nature of each turning point, but this is not necessary when considering the general shape of an x^3 graph. The maximum comes before the minimum and so there is a local maximum at x=2/3 and a local minimum at x=2. A careful check that the two stationary points are not both points of inflection can be done by just comparing the values of the graph at the two stationary points and seeing that the value decreases from x=2/3 to x=2, and so we indeed have a maximum and then a minimum.
The only values where we can have a maximum or minimum over the interval in the question are at the stationary points, or at the boundaries (this is often forgotten at A-level) x=0 and x=5. So, calculating the values at each of these four points gives:x=0, y=3 x=2/3, y = 113/27 x=2,y=3 x=5,y=48So the final answer is that there is a minimum at (0,3) or (2,3) ( both answers would be acceptable) and a maximum at (5,48).

Answered by Guy M. Maths tutor

5257 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of ln(x) equal to 1/x.


Integrate tan (x) with respect to x.


G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


Two masses A and B, 2kg and 4kg respectively, are connected by a light inextensible string and passed over a smooth pulley. The system is held at rest, then released. Find the acceleration of the system and hence, find the tension in the string.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences