Supposing y = arcsin(x), find dy/dx

Suppose:
y = arcsin(x)
Then, x = sin(y)
And, dx/dy = cos(y) ----- (1)
Using: dy/dx = 1/(dx/dy);
Thus 1 becomes: dy/dx = 1/cos(y) ------ (2)
Using: sin^2(y) + cos^2(y) = 1;
We can rearrange 2 to: dy/dx = 1/sqrt(1 - sin^2(y))
Therefore dy/dx = 1/(sqrt(1 - x^2)

JN
Answered by James N. Maths tutor

6280 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.


Find the centre and radius of the circle with the equation x^2 + y^2 - 8x - 6y - 20 = 0.


Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences