Integrate the function f(x) = 1/(4x-1)

t Using the fact that d/dx ( ln g(x)) = g'(x)/g(x), we can see that the integral of this function will be an ln function. From observing f(x) we see that if the answer was ln(4x-1) then f(x) would need to be 4/(4x-1). This is four times bigger than what we want. To obtain the correct integral, we simply multiply ln(4x-1) by 1/4 to get rid of the 4 in the numerator, and so we arrive at the final answer of 1/4 ln(4x-1)

Answered by Sachin V. Maths tutor

7013 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1


By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


How do you complete the square?


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences