Integrate the function f(x) = 1/(4x-1)

t Using the fact that d/dx ( ln g(x)) = g'(x)/g(x), we can see that the integral of this function will be an ln function. From observing f(x) we see that if the answer was ln(4x-1) then f(x) would need to be 4/(4x-1). This is four times bigger than what we want. To obtain the correct integral, we simply multiply ln(4x-1) by 1/4 to get rid of the 4 in the numerator, and so we arrive at the final answer of 1/4 ln(4x-1)

Answered by Sachin V. Maths tutor

7889 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.


What is the signed area between the curve y = x^2 - 4 and the x-axis?


Differentiate the following equation: f(x) = 5x^3 + 6x^2 - 12x + 4


Why maths is so hard sometimes?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences