Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y − 2x = 5 (5 marks)

First consider each equation separately and label them with a number. x2 + y2 = 25 (1) y - 2x = 5 (2)This question is difficult as it involves square numbers, unlike a normal simultaneous equation. Hence why there are 5 marks for it. *A common mistake is to go straight into (1) and square root the whole thing to get like terms for (2). By doing that you are actually creating more problems than is needed as the square root of 25 can be +5 or -5 and the square root of x2 and y2 can be +/- x and y. So as you cannot square or square root equations and you cannot add or minus them (no 'like' terms), try and substitute. For instance, rearrange (2) like so: y = 2x + 5 And substitute (2) into (1): x2 + (2x+5)(2x+5) = 25Expand the brackets like normal and collect like terms: 5x2 + 20x = 0Factorise to get the x values: 5x(x +4) = 0Find the x values: x = 0 x = -4Find the y values by substituting x into (1) always remember to do thisy = 5 (when x=0) y= 3 (when x = -4)By writing out the method like this, you should obtain the three M1 marks even if you get the x and y values wrong by mistake.

Answered by Karisma S. Maths tutor

9484 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3x+5y=7 and 9x+11y=13. Solve to find the values of x and y that satisfy both equations.


A ladder of length 4.5m is leaning against a wall. The foot of the ladder is 2.3m from the base of the wall. What is the angle the ladder makes with the wall?


The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


Complete the square of X^2 + 4X - 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences