Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°

sin2θ = 2sinθcosθ (double angle formula for sine)cos2θ = cos2θ - sin2θ (double angle formula for cosine) = 2cos2θ - 1 (utilising the trignometric identity sin2θ + cos2θ = 1)
We substitute these into our original equation to get4sinθcosθ = 1 + 2cos2θ - 1
Rearranging we getcosθ(cosθ - 2sinθ) = 0
Therefore, either cosθ = 0 or cosθ - 2sinθ = 0.
cosθ = 0 when θ = 90° only in the range we are given (draw a diagram)
We can divide the right hand equation by cosθ (note this is only valid when cosθ ≠ 0 <--> when θ ≠ 90°)This gives us1 - 2tanθ = 0 (Use inequality tanθ = sinθ/cosθ)
Which rearrages totanθ = 1/2Soθ = 26.6° only (draw diagram)(Note θ ≠ 90° so this was all valid)

We have θ = 26.6° and 90° as solutions.

Answered by Samuel N. Maths tutor

11768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate cos(x)sin^2(x)


Make x the subject of the equation: 5x+1 = 2-4x


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


The equation x^2+ kx + 8 = k has no real solutions for x. Show that k satisfies k^2 + 4k < 32.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences