Explain why for any constant a, if y = a^x then dy/dx = a^x(ln(a))

So let's start with taking the natural log on both sides of y=ax, giving us ln(y) = ln(ax). Using the laws of logarithms we can write this as ln(y) = xln(a).Next, we differentiate both sides with respect to x, giving d/dx(ln(y)) = d/dx(xln(a)). As the term on the left hand side does not include any x terms we use the chain rule in order to differentiate with respect to y, dy/dx(d/dy(ln(y)) = d/dx(xln(a)) and then carry out the differentiation. We are then left with dy/dx(1/y) = ln(a), and, using some manipulation we find dy/dx = yln(a), and the original substitution leaves us with exactly what we're looking for y = ax(ln(a)).

Answered by James M. Maths tutor

10328 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I remember what trig functions differentiate to?


intergrate xcos(2x) with respect to x


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


How many people in a room is required such that the probability of any two people sharing a birthday is over 50 percent?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences