Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.

We must first use the identity cosecθ = 1/sinθ. Now the equation becomes (1/sinθ)(3 cos 2θ+7)+11=0. Since we know that the question is asking for the answer in the form of asin2θ + bsinθ + c = 0, we realise that we must change cos 2θ into something containing sinθ instead. To do this we use the double angle formula cos2θ=1-2sin2θ. Substituting this into the equation we get (1/sinθ)(3 (1-2sin2θ)+7)+11=0. Simplifying this by multiplying out the brackets we find; (1/sinθ)(10-6sin2θ)+11=0. Multiplying out again gives us (10/sinθ)-6sinθ+11=0. Comparing this with the form of the answer that the question requires means we must multiply through by sinθ, giving us -6sin2θ + 11sinθ + 10 = 0.

GL
Answered by George L. Maths tutor

6446 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation (k+1)x^2 + (5k - 3)x + 3k = 0 has equal roots. Find the possible values of k


Find the exact value of sin(75°). Give your answer in its simplest form.


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


f(x) = x^3+2x^2-x-2 . Solve for f(x) = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning