Two apples and three bananas cost a total of £1.30. Seven apples and one banana cost a total of £1.70. Find the cost of a) one apple and b) one banana.

First, look at the key information from the question and form an equation for each of the first two sentences. These equations are as follows (let a represent the number of apples and b represent the number of bananas). Note that it is easier if you convert the prices to pence:
(1) 2a + 3b = 130
(2) 7a + b = 170
Next, you want to combine these equations in a way that eliminates either a or b. There are multiple ways of doing this. I would choose to first multiply (2) by 3 to form equation 3:
(3) 21a + 3b = 510
Then subtract (1) from (3) to form (4):
(4) 19a = 380
Solving (4) gives a = 20 (divide both sides by 19). If we rearrange (2) to make b the subject, then substitute a for 20, we get:
b = 170 - 7(20)
b = 170 - 140
b = 30
So the final answer is:
a) An apple costs 20p or £0.20b) A banana costs 30p or £0.30

JS
Answered by James S. Maths tutor

15848 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you multiply out two brackets?


Prove that the square of an odd number is always 1 more than a multiple of 4


Lily is buying theatre tickets. 4 adult tickets at £15 each 2 child tickets at £10 each A 10% booking fee is added to the ticket price. 3% is then added for paying by credit card. Work out the total ticket price if Lily is paying by card?


Solve these simultaneous Equations: 4y-2x=8 and 2x-y=7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning