Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.

( sec2(x))/((sec(x)+1)(sec(x)-1))Then, by the rule of 'difference of two squares', we know that this equals= (sec2(x))/(sec2(x)-1)= (sec2x/tan2x)since 1+tan2(x)=sec2(x), we get sec2(x)-1=tan2(x). By multiplying throughout by cos2(x), we get(sec2x/tan2x)=1/sin2(x)=cosec2(x)as required.

Answered by Rishi S. Maths tutor

9525 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do i find dy/dx in terms of t for two parametric equations that are in terms of t.


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences