Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.

( sec2(x))/((sec(x)+1)(sec(x)-1))Then, by the rule of 'difference of two squares', we know that this equals= (sec2(x))/(sec2(x)-1)= (sec2x/tan2x)since 1+tan2(x)=sec2(x), we get sec2(x)-1=tan2(x). By multiplying throughout by cos2(x), we get(sec2x/tan2x)=1/sin2(x)=cosec2(x)as required.

Answered by Rishi S. Maths tutor

10277 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.


Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


How do you integrate x* (exp(x))??


How do I find the equation of a tangent to a given point on a curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences