g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6

0 = ex-1+ x - 6 ex-1 = 6-x x-1 = ln (6-x) -> here we have taken the natural log of both sides, but it only shows on one side as the natural log of e is 1.x = ln (6-x) + 1Question taken from Edexcel 2013 C3 past paper, with my own adapted answer.

SN
Answered by Sumrah N. Maths tutor

6752 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .


What is the equation of the tangent to the curve y=x^3+3x^2+2 when x=2


Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.


Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences