g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6

0 = ex-1+ x - 6 ex-1 = 6-x x-1 = ln (6-x) -> here we have taken the natural log of both sides, but it only shows on one side as the natural log of e is 1.x = ln (6-x) + 1Question taken from Edexcel 2013 C3 past paper, with my own adapted answer.

SN
Answered by Sumrah N. Maths tutor

7090 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


What are the set of values for x that satisfy the below equation?


Find the integral of (x+4)/x(2-x) .dx


The equation of a curve C is (x+3)(y-4)=x^2+y^2. Find dy/dx in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning