Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .

Starting with: 2tanθsinθ = 4 - 3cosθ . We can rewrite tanθ in terms of sinθ and cosθ.We know: tanθ = sinθ ÷ cosθ .By substituting we get: 2(sinθ ÷ cosθ)sinθ = 4 - 3cosθ .Let's multiply out by cosθ to get: 2sin²θ = 4cosθ - 3 cos²θ .Remembering the trigonometric identity:sin²θ + cos²θ = 1 . We can find that: 2sin² = 2 - 2cos²θ .This is useful because when we substitute back into the original equation we can eliminate the 2sin²θ term.Hence: 2 - 2cos²θ = 4cosθ - 3 cos²θ .Finally rearranging we get: 0 = cos²θ - 4cosθ + 2 . Just what we wanted.

Answered by Henry S. Maths tutor

4647 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx where y= x^3(sin(x))


Find the area enclosed by the curve y = cos(x) * e^x and the x-axis on the interval (-pi/2, pi/2)


Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.


Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences