Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .

Starting with: 2tanθsinθ = 4 - 3cosθ . We can rewrite tanθ in terms of sinθ and cosθ.We know: tanθ = sinθ ÷ cosθ .By substituting we get: 2(sinθ ÷ cosθ)sinθ = 4 - 3cosθ .Let's multiply out by cosθ to get: 2sin²θ = 4cosθ - 3 cos²θ .Remembering the trigonometric identity:sin²θ + cos²θ = 1 . We can find that: 2sin² = 2 - 2cos²θ .This is useful because when we substitute back into the original equation we can eliminate the 2sin²θ term.Hence: 2 - 2cos²θ = 4cosθ - 3 cos²θ .Finally rearranging we get: 0 = cos²θ - 4cosθ + 2 . Just what we wanted.

HS
Answered by Henry S. Maths tutor

5298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?


g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


Differentiate a^x


What is the indefinite integral of cos^2x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning