Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .

Starting with: 2tanθsinθ = 4 - 3cosθ . We can rewrite tanθ in terms of sinθ and cosθ.We know: tanθ = sinθ ÷ cosθ .By substituting we get: 2(sinθ ÷ cosθ)sinθ = 4 - 3cosθ .Let's multiply out by cosθ to get: 2sin²θ = 4cosθ - 3 cos²θ .Remembering the trigonometric identity:sin²θ + cos²θ = 1 . We can find that: 2sin² = 2 - 2cos²θ .This is useful because when we substitute back into the original equation we can eliminate the 2sin²θ term.Hence: 2 - 2cos²θ = 4cosθ - 3 cos²θ .Finally rearranging we get: 0 = cos²θ - 4cosθ + 2 . Just what we wanted.

Answered by Henry S. Maths tutor

4843 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial p(x) is given by p(x)=x^3 - 5x^2 - 8x + 48. Given (x+3) is a factor of p(x), express p(x) as a product of 3 linear factors.


Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.


Prove cosec2A-cot2A=tanA


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences