Find the indefinite integral of sin(x)*e^x

As we are integrating, we must decide which method to use. As the integrand is of the form f(x)*g(x), integration by parts seems to make sense. Firstly, let L = INT(sin(x)*e^x). So we want to find L - this will help later.
Let u = sin(x), so du/dx = cos(x), and let dv/dx = e^x, so v = e^x.
Therefore L = sin(x)*e^x - INT(cos(x)*e^x)) (this formula is given to us).
To deal with the second term, we use integration by parts again.
Let u = cos(x), so du/dx = -sin(x), and let dv/dx = e^x, so v = e^x.
Therefore L = sin(x)*e^x - [cos(x)*e^x + INT(sin(x)*e^x)] - but this last term is simply L, our original expression!
Rearranging yields 2L = sin(x)*e^x - cos(x)*e^x.
Now simply divide by 2 and factorise the e^x, giving the final answer of:
L = e^x(sin(x) - cos(x))/2 + c

Answered by Christopher J. Maths tutor

3039 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)


Express 2x^2 +8x +7 in the form A(x+B)^2 + C, where A, B and C are constants


How do I know which method of diffirentiation to use?


Find the coordinates of the point of intersection between the line L:(-i+j-5k)+v(i+j+2k) and the plane π: r.(i+2j+3k)=4.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences