A buffer solution is made with a pH of 5.000. Solid sodium ethanoate, CH3COONa, is added to 400 cm^3 of 0.200 mol dm^–3 ethanoic acid (Ka = 1.75 × 10^–5 mol dm^–3). Calculate the mass of sodium acetate that must be dissolved in the acid to prepare this

There are three steps:
Calculate [CH3COO] using the equation for KaCalculate the moles of CH3COO using the equation concentration = moles/volumeCalculate the mass of CH3COONa using the equation moles = mass/RFM
Here's the situation:
CH3COOH <–> CH3COO + H+
Ka = [CH3COO][H+]/[CH3COOH]
To calculate the mass of CH3COONa, we must first calculate [CH3COO]. Luckily we have been given the three other variables in the Ka equation.
Ka = 1.75 × 10–5 (given in the question)
[CH3COOH] = 0.200 mol dm–3 (again, given in question)
[H+] = 10–5.000 mol dm–3 (since pH = –log10[H+])
Using the rearrangement [CH3COO] = Ka[CH3COOH]/[H+],
[CH3COO] = 1.75 × 10–5 x 0.200 / 10–5.000 = 0.350 mol dm–3
Use concentration = moles/volume to calculate the moles of CH3COO:
moles = 0.350 x 400/1000 = 0.140 (remember to convert cm3 into dm3 to keep the units consistent)
Use moles = mass/RFM to calculate the mass. RFM of CH3COONa can be obtained from the periodic table as 82.0:
mass = 0.140 x 82.0 = 11.48 g

Answered by Felix B. Chemistry tutor

12283 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How to write a redox equation from half equations


A buffer solution was formed by mixing 20.0 cm^3 of sodium hydroxide solution of concentration 0.100 mol dm^–3 with 25.0 cm^3 of ethanoic acid of concentration 0.150 mol dm^–3. CH3COOH + NaOH---CH3COONa + H2O Calculate the pH of this buffer solution.


Cracking of the unbranched compound E, C6H14, produced the saturated compound F and an unsaturated compound G (Mr = 42). Identify these compounds and write an equation for the reaction.


Explain why the 2nd Electron aiffinity of Chlorine is Endothermic whilst the first electron affinity is exothermic


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences