There are three steps:
Calculate [CH3COO–] using the equation for KaCalculate the moles of CH3COO– using the equation concentration = moles/volumeCalculate the mass of CH3COONa using the equation moles = mass/RFM
Here's the situation:
CH3COOH <–> CH3COO– + H+
Ka = [CH3COO–][H+]/[CH3COOH]
To calculate the mass of CH3COONa, we must first calculate [CH3COO–]. Luckily we have been given the three other variables in the Ka equation.
Ka = 1.75 × 10–5 (given in the question)
[CH3COOH] = 0.200 mol dm–3 (again, given in question)
[H+] = 10–5.000 mol dm–3 (since pH = –log10[H+])
Using the rearrangement [CH3COO–] = Ka[CH3COOH]/[H+],
[CH3COO–] = 1.75 × 10–5 x 0.200 / 10–5.000 = 0.350 mol dm–3
Use concentration = moles/volume to calculate the moles of CH3COO–:
moles = 0.350 x 400/1000 = 0.140 (remember to convert cm3 into dm3 to keep the units consistent)
Use moles = mass/RFM to calculate the mass. RFM of CH3COONa can be obtained from the periodic table as 82.0:
mass = 0.140 x 82.0 = 11.48 g