The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx

x = 5t + 3 -> x - 3 = 5t -> (x - 3) / 5 = t
y = 2 / t -> y = 2 / ((x - 3) / 5) -> y = 10 / (x - 3) dy/dx = d/dx (10 / (x - 3)) -> dy/dx= -10 (x - 3)-2

Answered by Dylan C. Maths tutor

3343 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.


The Curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx.


Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


Integrate (3x^2-x^3)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences