Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.

You would multiply both numerator and denominator by the expression (root3 +1)/(root3 +1). This expression is equal to 1 hence the original expression remains unchanged. The new expression is now (8(root3)+8)/(3-1). We simplify the numerator and denominator to 8((root3)+1)/2. Now we can divide by 2 so we get 4((root3)+1)/1 or 4((root3)+1). Finally we expand the expression to 4(root3)+4. So a=4 and b=4.

SK
Answered by Shubham K. Maths tutor

6958 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y=x^3+3 at the point x=1.


How would I integrate the indefinite integral x^2 dx?


Express 2/P(P-2) in Partial Fractions (C4)


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning