Consider f(x)=x/(x^2+1). Find the derivative f'(x)

To answer this question we need to decide which differentiation rule to use . The quotient rule looks like the obvious choice, so lets try that. If f(x)=u(x)/v(x) (being careful that v(x) is not zero anywhere, so f makes sense) we have that f'(x)=(v(x)u'(x)-u(x)v'(x))/(v(x)^2). In our example we have u(x)=x and v(x)=x^2+1. Taking derivatives gives u'(x)=1 and v'(x)=2x. So applying the quotient rule we have f'(x)=((x^2+1)-2x^2)/((x^2+1)^2) = (1-x^2)/((x^2+1)^2)

JH
Answered by Jack H. Maths tutor

4394 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate Sin(2X)


How do I differentiate 3^2x?


x = 3t - 4, y = 5 - (6/t), t > 0, find "dy/dx" in terms of t


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning