The point P, (-1,4) lies on a circle C that is centered about the origin. Find the equation of the tangent to the circle at point P.

The most important fact to remember with this question is that two perpendicular straight lines have gradients related by m1 = -1/m2. This can then be used to find the gradient of the tangent by first finding the gradient of the line passing through the origin and point P. This gradient, m1 is given by m1 = (4-0)/(-1-0) = -4. The gradient of the tangent is therefor m2 = -1/(-4) = 1/4. The equation of a straight line can be expressed as y = mx + c, so we have y = (1/4)x + c. As the tangent passes through P, the coordinates of P can be used to find c: (4) = (1/4)(-1) + c => c = 4 + 1/4 = 17/4.This provides the equation of the tangent to be y = (1/4)x + (17/4)

Answered by James A. Maths tutor

4034 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the value of x which satisfies the following equation 3 x2 + 6 x + 3 = 0


There are 7 white socks and 4 black socks. 2 are taken at random without replacement. What is the probablity that 2 socks of the same colour are taken?


The co-ordinates of P and Q respectively are (-9,7) and (11,12). M is on the line PQ such that PM:MQ = 2:3. L passes perpendicularly through M. What is the equation of L?


What is 45% of 60?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences