The most important fact to remember with this question is that two perpendicular straight lines have gradients related by m1 = -1/m2. This can then be used to find the gradient of the tangent by first finding the gradient of the line passing through the origin and point P. This gradient, m1 is given by m1 = (4-0)/(-1-0) = -4. The gradient of the tangent is therefor m2 = -1/(-4) = 1/4. The equation of a straight line can be expressed as y = mx + c, so we have y = (1/4)x + c. As the tangent passes through P, the coordinates of P can be used to find c: (4) = (1/4)(-1) + c => c = 4 + 1/4 = 17/4.This provides the equation of the tangent to be y = (1/4)x + (17/4)