In the photoelectric effect, what happens as you increase the frequency of light keeping the same intensity constant?

E=hf, so as you increase the frequency of light, the energy of each photon hitting the metal surface is greater. Thus the electrons liberated from the surface of the metal have a greater maximum kinetic energy.
We also said that the intensity of the light should stay the same. Intensity = Power/Area = (Energy/time)/Area. Given that the energy of each photon is greater with a higher frequency of light, there must be fewer photons hitting the metal surface per unit time in order to keep the intensity constant.
Thus, assuming that initially the photon frequency was above the threshold frequency, increasing the frequency at the same intensity will increase the kinetic energy of the photoelectrons liberated from the metal surface, but also reduce the number of electrons released.

AJ
Answered by Alexander J. Physics tutor

25862 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A golf ball is hit at angle θ to the horizontal, with initial velocity u. Stating an assumption, show that the horizontal distance travelled by the ball is directly proportional to u^2.


Is Pluto a planet?


A photon has an energy of 1.0 MeV. Calculate the frequency associated with this photon energy. State an appropriate unit in your answer.


How many joules of heat energy are required to raise the temperature of 10kg of water from 22⁰C to 27⁰C? (The Specific Heat Capacity of water is 4200 Jkg^-1⁰C^-1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning