Answers>Maths>IB>Article

Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.

Setting the two equations equal to one another to find the intersection boundaries:x^2+16x+4=6x+4; x^2+16x+4-6x-4=0; x^2+10x=0;x(x+10)=0; x=0, x=-10. Setting up the volume of revolution (N.B. Due to typing restrictions, the boundaries will be applied at the end): V=|piInt((y^2)dx)|, where y=y2-y1, as specified by the question. Doing the integration separately to simplify the calculations: I=Int((y^2)dx)=Int(-(x^2+10x)^2dx)=Int(-(x^4+20x^3+10x^2)dx)=-(x^5/5+5x^4+100x^3/3) Hence, substituting the result above into the original volume equation, and taking common fractions: V=|-pi/15(3x^5+75x^4+500x^3)| Applying the boundaries: V=|-pi/15*(-1)(-310^5+7510^4-50010^3)|=|-0.5pi/1510^5|=|-pi/3010^5|. Therefore, the Volume of the generated solid is pi/30*10^5 units cubed.

FG
Answered by Filippos G. Maths tutor

2324 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


Find out the stationary points of the function f(x)=x^2*e^(-2x)


Let f (x) = sin(x-1) , 0 ≤ x ≤ 2 π + 1 , Find the volume of the solid formed when the region bounded by y =ƒ( x) , and the lines x = 0 , y = 0 and y = 1 is rotated by 2π about the y-axis.


Can you explain the approach to solving IB maths induction questions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning