Answers>Maths>IB>Article

Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.

Setting the two equations equal to one another to find the intersection boundaries:x^2+16x+4=6x+4; x^2+16x+4-6x-4=0; x^2+10x=0;x(x+10)=0; x=0, x=-10. Setting up the volume of revolution (N.B. Due to typing restrictions, the boundaries will be applied at the end): V=|piInt((y^2)dx)|, where y=y2-y1, as specified by the question. Doing the integration separately to simplify the calculations: I=Int((y^2)dx)=Int(-(x^2+10x)^2dx)=Int(-(x^4+20x^3+10x^2)dx)=-(x^5/5+5x^4+100x^3/3) Hence, substituting the result above into the original volume equation, and taking common fractions: V=|-pi/15(3x^5+75x^4+500x^3)| Applying the boundaries: V=|-pi/15*(-1)(-310^5+7510^4-50010^3)|=|-0.5pi/1510^5|=|-pi/3010^5|. Therefore, the Volume of the generated solid is pi/30*10^5 units cubed.

Answered by Filippos G. Maths tutor

1955 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the differential equation csc(x)*dy/dx=exp(-y), given that y(0)=0. (Typical Math HL paper 3 question, Calculus optional topic)


Factorise z^3+1 into a linear and quadratic factor. Let y=(1+i√3)/2. Show that y is a cube root of -1. Show that y^2=y-1. Find the value of (1-y)^6.


Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .


Identify and classify the stationary points of f using the second derivative test, where f is the function given below


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences