Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

(Lets consider a simple planetary system composed of a planet orbiting a star. the gravitational force between the two is given by F=(GMm)/(r2). Assuming the planet also moves in a circular orbit, we can consider the centripetal force, F=mω2r. As both gravitational and centripetal forces act in the same direction, we can equate them to find (GMm)/(r2)=mω2r.
We note that 'm' cancels and we can divide through by 'r' to arrive at GM/r32. ω is simply angular frequency given by ω =2π/T. Substituting this into our expression we find that GM/r3= 4π2/T2.After some simple rearranging, we note that  T=(4π2r3)/(GM). So  T2 is indeed proportional to  r3 . This simple statement is known as Kepler's third law of planetary motion.

Answered by Karanvir S. Physics tutor

23897 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If a wire loop moves at constant speed into a region where there is a magnetic field, why is a current induced in the wire?


What is the photoelectric effect and how does it provide evidence for the quantisation of electromagnetic radiation?


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


A bungee jumper of mass 160kg falls from a cliff. The bungee cord has a natural length of 5.0m and a stiffness constant of 3.0N/m. The air resistance is a constant force of 4.0N, what's the speed of the jumper when the total length of cord is 5.9m?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences