Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

(Lets consider a simple planetary system composed of a planet orbiting a star. the gravitational force between the two is given by F=(GMm)/(r2). Assuming the planet also moves in a circular orbit, we can consider the centripetal force, F=mω2r. As both gravitational and centripetal forces act in the same direction, we can equate them to find (GMm)/(r2)=mω2r.
We note that 'm' cancels and we can divide through by 'r' to arrive at GM/r32. ω is simply angular frequency given by ω =2π/T. Substituting this into our expression we find that GM/r3= 4π2/T2.After some simple rearranging, we note that  T=(4π2r3)/(GM). So  T2 is indeed proportional to  r3 . This simple statement is known as Kepler's third law of planetary motion.

Answered by Karanvir S. Physics tutor

23895 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In an electric propulsion system, alpha particles are accelerated through a potential difference of 100kV at an average rate of 10^20 alpha particles per second. Calculate the average thrust the system can provide.


What is the difference between a vector and a scalar quantity?


What is the stress in a cylindrical rod of 10.0cm diameter when loaded by 50.0N force at each end?


Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences