Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

(Lets consider a simple planetary system composed of a planet orbiting a star. the gravitational force between the two is given by F=(GMm)/(r2). Assuming the planet also moves in a circular orbit, we can consider the centripetal force, F=mω2r. As both gravitational and centripetal forces act in the same direction, we can equate them to find (GMm)/(r2)=mω2r.
We note that 'm' cancels and we can divide through by 'r' to arrive at GM/r32. ω is simply angular frequency given by ω =2π/T. Substituting this into our expression we find that GM/r3= 4π2/T2.After some simple rearranging, we note that  T=(4π2r3)/(GM). So  T2 is indeed proportional to  r3 . This simple statement is known as Kepler's third law of planetary motion.

Answered by Karanvir S. Physics tutor

21375 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?


Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).


Describe the process of a capacitor charging.


I have an infinite number of glass blocks stacked side by side. The first block has refractive index n1, the second n2 and so on, such that n1<n2...<n(infinity). I shine a light on the stack, what angle does the ray make to the normal on the last block?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences