What is product rule differentiation?

Product rule differentiation, is a form of differentiation which is used to calculate the derivative, i.e. the gradient of the function, of a function f(x) which is made up of one function g(x) multiplied by another function t(x). So given f(x)= g(x).t(x) we can calculate its derivative f'(x). First we calculate the individual derivatives t'(x) and g'(x) we then calculate the derivative of the function f(x) using the formula f'(x)=t'(x)g(x)+g'(x)t(x).For example given the function f(x)=x3sin(x) so t(x)=x3 , t'(x)=3x2 , g(x)=sin(x) g'(x)=cos(x) therefore f'(x)=3x2sin(x)+x3cos(x)

Answered by Thomas F. Maths tutor

3493 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


differentiate y = 4x^3(12e^-4x) with respect to x


Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences