Solve the following simultaneous equations for x and y : 2x - y = 12; x + 3y = 20

When solving equations such as these we have two variables which represent two numbers. In order to solve them we want to isolate and remove one of the variables so we are only left with one, we do this by moving one of the variables onto the other side of each equation. If we add 'y' to both sides of the first equation we end up with Equation A: 2x = 12 + y. If we then subtract '3y' to both sides of the second equation we arrive at Equation B: x = 20 - 3y.
We are nearly able to remove the variable 'x' but first we need to make sure that the number in front of the 'x' is the same. We could either divide the first equation by 2 OR we could multiply the second equation by 2. The second option will be much easier so we will do that. After multiplying the second equation we arrive at Equation C: 2x = 40 - 6y.
Now we can remove 'x' by subtracting Equation A from Equation C. The resulting equation is: 28 - 7y = 0. By rearranging and dividing the equation by 7 we find that y = 4. The last thing to do is to put the value of 'y' into the original two equations to work out the value of 'x'. The final answer therefore is x = 8, y = 4.

AS
Answered by Alexander S. Maths tutor

7349 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I factorise quadratic equations?


Find the roots of the following equation 2x^2-11x+14=0


One of the teachers at a school is chosen at random. The probability that this teacher is female is 3/5 There are 36 male teachers at the school. Work out the total number of teachers at the school.


There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60 The mean mark for the girls is 54 Work out the mean mark for the boys.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning