(Q20 Non-Calculator paper, Higher Tier) Solve algebraically the simultaneous equations: x^2 + y^2 = 25 and y – 3x = 13

We have a quadratic equation (unknowns are raised to the power of 2) and a liner equation (power 1). We will use the linear equation to express one of the variables, e.g. y, in terms of the other, i.e. x. Then, we will substitute the obtained expression for y in the quadratic equation and solve for x, using the quadratic formula. Having found x, we will use its value to find y.Execute: From y - 3x = 13 => y = 13 + 3xFrom x2 + y2 = 25 => x2 + (13+3x)2= 25. Expanding the brackets we get: 10x2 + 78x + 144 = 0. Using the quadratic formula: x= {-b +/- sqrt (b2-4ac)}/(2a) we get: x = -3 and x = -4.8. Plugging those values in y = 13 + 3x, we get: y = 4 and y = -1.4 in this order. Answer: x = -3, y = 4 & x = -4.8, y = -1.4. Note: lack of formatting options make the formulae look much more complicated than they are. Using whiteboard will resolve this issue.

Answered by Darena S. Maths tutor

4017 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you factorise a quadratic?


Paul organised an event for a charity. Each ticket for the event cost £19.95 Paul sold 395 tickets. Paul paid costs of £6000 He gave all money left to the charity. (a) Work out an estimate for the amount of money Paul gave to the charity.


Rearranging Formulae


Solve the following simultaneous equations: y - 2x = 6 and y + 2x = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences