Draw the electric field lines produced by a negative point charge and calculate the electric field strength at a distance of 50mm from a point charge of size -30nC.

The diagram should show a negative point charge with the electric field lines pointing towards the point charge. The separation of the lines should decrease as you get closer to the point charge. The lines should be straight and perpendicular to the equipotential lines which circle the point charge.

In order to calculate the electric field strength, the equation for the force on a charge due to Coulomb's law and the equation for the electric field strength must be combined to give an equation for the electric field strength in terms of the size of the point charge;
F = Q1 Q2 / 4πε0 r2
E = F / Q1
E = Q2 / 4πε0 r2

Q2 should be recognised as the size of the point charge and this should be changed should be changed into Coulombs (nC = 1 x 10-9 C).
r should be recognised as the distance from the point charge and this should be changed into metres (mm = 1 x 10-3 m).
These numbers and the constants should be substituted into the final equation to give an electric field strength of -1.08 x 105 C (3 significant figures).

JB
Answered by Jemima B. Physics tutor

2754 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does the photoelectric effect provide evidence for a particulate nature of electromagnetic radiation?


Draw a diagram of the forces acting on the rocket as it flies vertically upwards, the rocket is flying through air not a vacuum (it's not in space yet!)


There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.


A phone is knocked off a table 800cm of the ground. If the phone is 650g a) what is the gravational potential of the phone? b)what speed will the phone hit the floor at? c)How long will it take for the phone to hit the floor?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences