Locate the position and the nature of any turning points in the function: 2x^3 - 9x^2 +12x

I would first ask the student to draw a cubic graph(preferably the function in asking depending on the student's capability). I would then ask the student to show me where the stationary points in the graphs are. All this will aid in the student's understanding of the underlying concepts of the first and second derivatives. If the student struggles at any point, I will give the student an opportunity to think before giving hints.
The first derivative is worked out: dy/dx= 6x2 -18x+12. This is set to equal zero in order to find the stationary points. This can be done by factorising and finding the x values where the equation equal to zero: dy/dx=(6x-12 )(x-1). This leads to the values x =2 and x=1. After differentiating again to get the second derivative: d2y/dx2 = 12x -18. When x = 2, d2y/dx2 = 6, when x = 1, d2y/dx2 = -6. A negative second derivative indicates a maxima and a positive value indicates a minima. After substitution into the original function to find the corresponding y-values:x = 2, y = 4, Minimax = 1, y = 5, Maxima

Answered by Ewa I. Maths tutor

5476 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that 2(1-cos(x)) = 3sin^2(x) can be written as 3cos^2(x)-2cos(x)-1=0.


a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x


Write (3 + 2√5)/(7 + 3√5) in the form a + b√5


The quadratic equation 2x^2 + 8x + 1 = 0 has roots a and b. Write down the value of a + b, a*b and a^2 + b^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences