Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2

Firstly, Differentiate the equation to find dy/dx. (dy/dx = 6x^2-10x-4)dy/dx shows the rate of change of the curve at a point, so at the stationary point dy/dx =0. So, put dy/dx = 0 and solve using factorisation. 6x^2 -10x -4=0,(x-2)(6x+2)=0x=2 or x=-1/3To find the y co ordinate plug these x values into the equation of the curve. y=2x2^3-5x2^2-4x2+2=-10y=2x(-1/3)^3-5x(-1/3)^2-4x(-1/3)+2=2.70The nature of the turning point is found using the double derrivative. So differentiate dy/dx to find d^2y/dx^2.d^2y/dx^2=12x-10where x =2:d^2y/dx^2=12x2-10=14If d^2y/dx^2>0 the point is a minimum. So, where x =2 the stationary point is a minimum.where x =-1/3:d^2y/dx^2=12x(-1/3)-10=-14If d^2y/dx^2<0 the point is a maximum. So, where x =-1/3 the stationary point is a maximum.

Answered by Asha K. Maths tutor

8561 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the first derivative of f( x)= 3x^3+2x^2-5


For which values of k does the quadratic equation 2x^2+kx+3=0 only have one unique solution?


What is an Inverse function?


Why, how and when do we use partial fractions and polynomial long division?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences