Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2

Firstly, Differentiate the equation to find dy/dx. (dy/dx = 6x^2-10x-4)dy/dx shows the rate of change of the curve at a point, so at the stationary point dy/dx =0. So, put dy/dx = 0 and solve using factorisation. 6x^2 -10x -4=0,(x-2)(6x+2)=0x=2 or x=-1/3To find the y co ordinate plug these x values into the equation of the curve. y=2x2^3-5x2^2-4x2+2=-10y=2x(-1/3)^3-5x(-1/3)^2-4x(-1/3)+2=2.70The nature of the turning point is found using the double derrivative. So differentiate dy/dx to find d^2y/dx^2.d^2y/dx^2=12x-10where x =2:d^2y/dx^2=12x2-10=14If d^2y/dx^2>0 the point is a minimum. So, where x =2 the stationary point is a minimum.where x =-1/3:d^2y/dx^2=12x(-1/3)-10=-14If d^2y/dx^2<0 the point is a maximum. So, where x =-1/3 the stationary point is a maximum.

AK
Answered by Asha K. Maths tutor

8642 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I differentiate something in the form of (ax+b)^n


Figure 1 shows a sector AOB of a circle with centre O and radius r cm. The angle AOB is θ radians. The area of the sector AOB is 11 cm2 Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value of r.


Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10


Integrate (lnx)/x^2 dx between limits 1 and 5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences