Find the inverse of a 2x2 matrix

Consider the 2x2 matrix M, consisting of elements a, b, c and d. To find its inverse one must first find the determinant of M. This is achieved by calculating the result of the expression ad - bc. The inverse of M is subsequently found by multiplying the reciprocal of the determinant (1/ad - bc) by a rearrangement of the original matrix such that the positions of a and d are swapped and b and c are multiplied by -1. For the inverse to exist the determinant of M must be non-zero, since the reciprocal of zero is infinite. This suggests that for some matrices there exists no inverse and so these and referred to as singular.

Answered by Giovanni D. Maths tutor

3013 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).


How do I differentiate 4x^3 + 2x + x^4 with respect to x?


The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.


If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences