Given the parametric equations x = t^2 and y = 2t -1 find dy/dx

The first step is to find dx/dt and dy/dt, this is done using standard differentiation rules giving the resultsdx/dt = 2t dy/dt = 2
The second step is to eliminate dt. This can be done by the multiplication dy/dt * dt/dx = dy/dx. dt/dx is equivalent to 1/(dx/dt) = 1/(2t), multiply this by dy/dt to find the final answer which is dy/dx = 1/(2t) * 2 = 1/t.

Answered by Matthew H. Maths tutor

8325 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]


theta = arctan(5x/2). Using implicit differentiation, find d theta/dx.


How do you solve the equation e^2x - 2e^x - 3 = 0 ?


What is the tangent line to the curve y = x^3+4x+5 at the point where x = 2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences