The radius of the Earth is 6,400km and has a mass of 6x10^24kg. Calculate the minimum velocity needed by a projectile, fired from the surface of the Earth in order to escape the Earths gravity.

First we write down the relevant information given in the question. Re = 6,400km = 6.4 x 106 m, Me = 6 x 1024 kg.For the projectile to escape the Earths gravity, the projectile must be launched with a kinetic energy which is greater than the amount of work needed to overcome Earths gravity, or Earth's gravitational potential. To find the minimum velocity required, we equate kinetic energy and gravitational potential on Earths surface and rearrange for velocity.
-GMm/R = 0.5mv2
Hence, v2 = -2GM/R, so vesc = sqrt(-2GM/R)Inputting the values gives an escape velocity of vesc = 11200 ms-1 to 3 s.f

Answered by Neil C. Physics tutor

6610 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

During take-off from earth, an astronaut of mass 76kg has an area of contact with his seat of 0.095m^2. Calculate the average pressure on the seat when the upward acceleration of the rocket is 47ms^-2


A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?


Draw and describe the major points of a typical stress-strain graph for a metal.


A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences