The radius of the Earth is 6,400km and has a mass of 6x10^24kg. Calculate the minimum velocity needed by a projectile, fired from the surface of the Earth in order to escape the Earths gravity.

First we write down the relevant information given in the question. Re = 6,400km = 6.4 x 106 m, Me = 6 x 1024 kg.For the projectile to escape the Earths gravity, the projectile must be launched with a kinetic energy which is greater than the amount of work needed to overcome Earths gravity, or Earth's gravitational potential. To find the minimum velocity required, we equate kinetic energy and gravitational potential on Earths surface and rearrange for velocity.
-GMm/R = 0.5mv2
Hence, v2 = -2GM/R, so vesc = sqrt(-2GM/R)Inputting the values gives an escape velocity of vesc = 11200 ms-1 to 3 s.f

NC
Answered by Neil C. Physics tutor

6846 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between potential energy and potential?


Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units


A yacht is sailing through water that is flowing due west at 2m/s. The velocity of the yacht relative to the water is 6m/s due south. The yacht has a resultant velocity of V m/s on a bearing of theta. Find V and theta


An unknown capacitor is charged to 6v, its maximum value, then discharged through a 1k ohm resistor. If the capacitor voltage is 3v, 0.3 seconds after starting to discharge, what is the capacitance of the unknown capacitor?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences