Differentiate y=ln(ln(x)) with respect to x.

To solve this question we need to understand the process of implicit differentiation, which is a case of using the chain rule. If you remember the chain rule states that for y=f(g(x)), we have y'=f'(g(x))g'(x), so that we treat y as being composed of two functions and differentiate them individually, then multiply. So instead if we have f(y)=g(x), then using the same rule on the left hand side but with y, and differentiating both sides we get y'f'(y)=g'(x). Now that this is understood we can solve the question. We are given y=ln(ln(x)) so ey = ln(x). Now differentiate this on both sides: y'ey=1/x. Now we're looking for y' on one side and everything else on the other:y'=1/(xey). We're almost there but there's a problem, we want y' with respect to x so we need the right hand side only with x: fortunately we know ey=lnx, so y'=1/(xln(x)). And we are done. Can you differentiate y = ln(ln(x2)) for me?

MK
Answered by Marek K. Maths tutor

5134 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A medical test will be positive for 0.05% of people and negative for everyone else. Suppose a hospital will test 4000 patients each day. Use an appropriate approximation to find the probability that 5 people test positive tomorrow. (5SF)


differentiate x^2 + y^3 + xy respect to x


How do I remember the common values of cosx, sinx and tanx?


How do I tell if a curve has a maximum or a minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning