By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.

The first thing observe is that we are being asked to use a specific approach in order to solve for both x and y, hence we should not approach this question via elimination of a single variable, though it is entirely valid to determine solutions in this way. We transform the system into the form Av=b, where A will be the 2x2 matrix3 -7-2 5,v and b are the vectors (2x1 matrices) with entries x,y and 6,-3 respectively (easier to draw out matrices on whiteboard). We then proceed to calculate the determinant of the matrix A, which provided to be non-zero, will provide a unique solution via the manipulation v=A^(-1)*b.We calculate a determinant of 1 for the matrix A (15-14) and as such get the unique inverse to A as5 -7-2 3,with which we left multiply the vector b to yield the solutions as x = 9 and y =3. To justify the uniqueness of our solution it would be suitable to either state that the inverse of a matrix, where it exists, is unique or to appeal to a graphical explanation, from which some insight into the values of x and y may be gained.

Related Further Mathematics A Level answers

All answers ▸

The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


What is the modulus of 3+4i?


How do you find the general solution of a second order differential equation?


Show that cosh^2(x)-sinh^2(x)=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences