How do I find the stationary points of a curve?

For a curve where y = f(x) the gradient of the curve is the derivative of this equation dy/dx. Stationary points of a curve occur when the gradient of the curve is zero. Hence find the expression for dy/dx and solve the equation:
dy/dx = 0
Once the x values which satisfy this equation are found the corresponding y values for each x value can be found by subbing the x values into the equation of the curve. You now have the full set of coordinates for the stationary points of the curve.
A possible extension would be to explain how the nature of the stationary points are found.

Answered by Anna M. Maths tutor

3151 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where does the circle equation come from?


Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)


An object of mass 2kg is placed on a smooth plane which is inclined at an angle of 30 degrees from the ground. Calculate the acceleration of the object.


integrate 1+ln(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences