A curve has equation y=2x^3. Find dy/dx.

We differentiate here to find the gradient, dy/dx, i.e. the differenitial of y in terms of x. As the right handside is purely dependant on x, this is simple. We can just multiply through by the power, i.e. 2x3=6, then negate the power by one, 3-1=2. Therefore giving us dy/dx = 6x^2.

Answered by Claire T. Maths tutor

3545 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Figure 1 shows a sector AOB of a circle with centre O and radius r cm. The angle AOB is θ radians. The area of the sector AOB is 11 cm2 Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value of r.


Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


Evaluate the indefinite integral: ∫ (e^x)sin(x) dx


A circle with centre C(2, 3) passes through the point A(-4,-5). (a) Find the equation of the circle in the form (x-a)^2 + (y-b)^2=k


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences