Solve the simultaneous equations: x+y=2 , 4y²-x²=11

These equations would best be solved using the substitution method, in this case the easiest way would be substituting x. For the first equation we need to rearrange it to get x on one side so we have x=2-y.So if we substitute x from the first equation into the second equation we get 4y² - (2-y)²=11. The next step is to solve this equation to find y. By expanding the brackets we get 4y²- 4+4y- y²=11. If we simplify this leads to the quadratic equation of 3y² + 4y- 15=0. We can factorise this to get (3y-5) (y+3)= 0. Therefore y= 5/3 or -3.If we substitute our values for y into equation 1 which is x+y=2, we get x= 2-5/3 and x= 2-(-3), therefore x= 1/3 or 5.So the final values are x= 1/3, y= 5/3 or x=5, y=-3.

WP
Answered by Waris P. Maths tutor

5413 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you know whether to use sin, cos or tan to find the angle in a triangle?


A cycle race across Hungary is 392,5 miles long. Bob is a contestant in this race, he can go as fast as 13.48 miles per hour and can pedal 6 hours a day. Work out in how many days will Bob complete this race.


A house increases by 25% to £80,000. Find what it was worth before the rise.


A right-angled triangle has side lengths of 4cm and 3cm. What is the length of its hypotenuse?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences