Solve the simultaneous equations: x+y=2 , 4y²-x²=11

These equations would best be solved using the substitution method, in this case the easiest way would be substituting x. For the first equation we need to rearrange it to get x on one side so we have x=2-y.So if we substitute x from the first equation into the second equation we get 4y² - (2-y)²=11. The next step is to solve this equation to find y. By expanding the brackets we get 4y²- 4+4y- y²=11. If we simplify this leads to the quadratic equation of 3y² + 4y- 15=0. We can factorise this to get (3y-5) (y+3)= 0. Therefore y= 5/3 or -3.If we substitute our values for y into equation 1 which is x+y=2, we get x= 2-5/3 and x= 2-(-3), therefore x= 1/3 or 5.So the final values are x= 1/3, y= 5/3 or x=5, y=-3.

Answered by Waris P. Maths tutor

5410 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I factorise a quadratic expression with coefficient greater than 1 i.e. 2x^2 + x - 6.


Solve 3(3x - 2) = 5x + 10


A particle P of mass 0.4 kg is moving under the action of a constant force F newtons. Initially the velocity of P is (6i – 27j) m s−1 and 4 s later the velocity of P is (−14i + 21j) m s−1 . Find, in terms of i and j, the acceleration of P.


In a village the number of houses and the number of flats are in the ratio 7 : 4. The number of flats and the number of bungalows are in the ratio 8 : 5 . There are 50 bungalows in the village. How many houses are there in the village?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences