How do you find the stationary points on a curve?

Let y = f(x). The gradient of the tangent to the curve at a stationary point is equal to 0. To find an equation for the gradient of the curve, differentiate f(x) to get dy/dx. Because we are looking for stationary points, set the equation for dy/dx (the gradient) equal to 0. Rearrange to find the value(s) for x. Substitute the value(s) for x into the original equation for f(x) to find the corresponding y value(s). These are the stationary points on the curve.

CM
Answered by Caroline M. Maths tutor

3683 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


Identify two errors made by a student asked to evaluate the following integral (Will upload question to less space)


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning