How do you find the stationary points on a curve?

Let y = f(x). The gradient of the tangent to the curve at a stationary point is equal to 0. To find an equation for the gradient of the curve, differentiate f(x) to get dy/dx. Because we are looking for stationary points, set the equation for dy/dx (the gradient) equal to 0. Rearrange to find the value(s) for x. Substitute the value(s) for x into the original equation for f(x) to find the corresponding y value(s). These are the stationary points on the curve.

CM
Answered by Caroline M. Maths tutor

3195 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate a function comprised of two functions multiplied together?


The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


Calculate the value of the definite integral (x^3 + 3x + 2) with limits x=2 and x=1


Use integration to find I = ∫ xsin3x dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences